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ABSTRACT
Smartphone users have their own unique behavioral pat-
terns when tapping on the touch screens. These personal
patterns are reflected on the different rhythm, strength, and
angle preferences of the applied force. Since smartphones are
equipped with various sensors like accelerometer, gyroscope,
and touch screen sensors, capturing a user’s tapping behav-
iors can be done seamlessly. Exploiting the combination
of four features (acceleration, pressure, size, and time) ex-
tracted from smartphone sensors, we propose a non-intrusive
user verification mechanism to substantiate whether an au-
thenticating user is the true owner of the smartphone or an
impostor who happens to know the passcode. Based on the
tapping data collected from over 80 users, we conduct a se-
ries of experiments to validate the efficacy of our proposed
system. Our experimental results show that our verifica-
tion system achieves high accuracy with averaged equal error
rates of down to 3.65%. As our verification system can be
seamlessly integrated with the existing user authentication
mechanisms on smartphones, its deployment and usage are
transparent to users and do not require any extra hardware
support.
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1. INTRODUCTION
Smartphones have become ubiquitous computing platforms

allowing users anytime access to the Internet and many on-
line services. On one hand, as a personal device, a smart-
phone contains important private information, such as text
messages, always-logged-in emails, and contact list. On the
other hand, as a portable device, a smartphone is much eas-
ier to get lost or stolen than conventional computing plat-
forms. Therefore, to prevent the private information stored
in smartphones from falling into the hands of adversaries,
user authentication mechanisms have been integrated into
mobile OSes like Android and iOS.

Due to having a much smaller screen and keyboard on a
smartphone than the traditional user input/output devices,
PIN-based and pattern-based passcode systems have been
widely used in smartphones for user authentication. How-
ever, many people tend to choose weak passcodes for ease of
memorization. A 2011 survey on iPhone 4-digit passcode re-
veals that the ten most popular passcodes represent 15% of
all 204,508 passcodes and the top three are 1234, 0000, and
2580 [1]. Moreover, recent studies show that an attacker can

detect the location of screen taps on smartphones based on
accelerometer and gyroscope readings and then derive the
letters or numbers on the screen [5, 21, 26, 31]. An attacker
could even exploit the oily residues left on the screen of a
smartphone to derive the passcode [2]. Therefore, it is highly
desirable to enhance the smartphone’s user authentication
with a non-intrusive user verification mechanism, which is
user-transparent and is able to further verify if the success-
fully logged-in user is the true owner of a smartphone.

In this paper, we explore the feasibility of utilizing user
tapping behaviors for user verification in a passcode-enabled
smartphone. The rationale behind our work is that individ-
ual human users have their own unique behavioral patterns
while tapping on the touch screen of a smartphone. In other
words, you are how you touch on the screen, just like you
are how you walk on the street. The rich variety of sen-
sors equipped with a smartphone including accelerometer,
gyroscope, and touch screen sensors, make it possible to ac-
curately characterize an individual user’s tapping behaviors
in a fine-grained fashion. With over 80 smartphone users
participated in our study, we quantify the user tapping be-
haviors in four different aspects: acceleration, pressure, size,
and time. Based on the behavioral metrics extracted from
these four features, we apply the one-class learning tech-
nique for building an accurate classifier, which is the core of
our user verification system.

We evaluate the effectiveness of our system through a se-
ries of experiments using the empirical data of both 4-digit
and 8-digit PINs. In terms of accuracy, our approach is
able to classify the legitimate user and impostors with aver-
aged equal error rates of down to 3.65%. Overall, our ver-
ification system can significantly enhance the security of a
smartphone by accurately identifying impostors. Especially
for practical use, our tapping-behavior-based approach is
user-transparent and the usability of traditional passcodes
on a smartphone remains intact. As our approach is non-
intrusive and does not need additional hardware support
from smartphones, it can be seamlessly integrated with the
existing passcode-based authentication systems.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the background of this work. Section 3 de-
scribes our data collection and measurement, including our
choice of metrics. Section 4 details the proposed classifier for
user verification. Section 5 presents our experimental design
and results. Section 6 discusses additional issues which arise
from the details of our approach. Section 7 surveys related
work, and finally Section 8 concludes.
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2. BACKGROUND
The tapping behaviors of individual users on touchscreen

vary from person to person due to differences in hand ge-
ometry and finger agility. Each user has a unique personal
tapping pattern, reflected on the different rhythm, strength,
and angle preferences of the applied force. As our tapping-
behavior-based approach verifies the owner of a smartphone
based on“who you are”– your physical and behavioral traits,
instead of “what you know”, it belongs to biometrics-based
user authentication. In general, a biometrics authentica-
tion system authenticates users either by their physiological
traits like faces and voices [4, 19] or behavioral patterns like
finger typing and hand movements [24, 33].

While physiological traits can achieve high accuracy in the
process of user authentication, they have not been widely
used in mobile devices. Recent studies have also shown that
the physiology-based mechanisms deployed in mobile devices
are sensitive to certain environmental factors, which could
significantly diminish their accuracy and reliability. For ex-
ample, face recognition may fail due to a different viewing
angle and poor illumination [27], and voice recognition de-
grades due to background noise [4]. However, given the same
mobile device, behavioral biometrics tend to be less sensi-
tive to the surrounding environmental factors like darkness
or noise.

Exploiting the behavioral information captured by mul-
tiple sensors on a smartphone, we can exclusively create a
detailed user profile for verifying the owner of the smart-
phone. Since our approach works seamlessly with the exist-
ing passcode-based user authentication mechanisms in mo-
bile devices, it plays a role of implicit authentication. In
other words, our approach can act as a second factor authen-
tication method and supplement the passcode systems for
stronger authentication in a cost-effective and user-transparent
manner. More recently, seminal works have been proposed
to explore the feasibility of user verification employing the
behaviors of pattern-based passwords [18]. However, the
false reject rate (FRR) of their work is rather high, which
means there is a high chance that the owner of a mobile
device would be mistakenly regarded as an impostor and be
blocked from accessing the device.

3. MEASUREMENT AND CHARACTERIZA-
TION

For data collection, we invite graduate and undergraduate
students in our institution to participate in this study. The
experiment has been filed and approved by the Institutional
Review Board (IRB) to ensure participants are treated eth-
ically. The consent form can be found in the appendix. We
respect user privacy and conform to ethical standards, in
specific to make sure: (1) no data are being collected re-
garding personal credentials, e.g., we do not ask for partic-
ipants’ personal credentials; (2) the informed consent form
indicates that participation will take no more than 5 min-
utes. We will ask each participant to be eligible for our study
if he/she plans to perform tasks on a smartphone for at least
5 minutes; (3) only raw events from smartphone sensors will
be collected, and no user identities or any other user-related
information will be recorded. The trace data are further
anonymized if necessary. The collected data will be used
for academic research only; (4) participants are invited to
take part in this tapping behavior study. The consent form

(a) Application
Layout

(b) Two-Hand Typing

Figure 1: Screen layout of our data collection appli-
cation, and the two-hand typing action.

(please refer to the Appendix I) tells them why this research
study is being done, what will happen in the research study,
and possible risks and benefits to them. If there is anything
participants do not understand, they are welcomed to ask
questions. Then they can decide if they want to participate
or continue this study or not.

Over 80 participants are involved in our data collection.
Five different PINs are tested, in which three of them are
4-digit, and two are 8-digit. Here we choose PINs 3-2-4-4, 1-
2-5-9-7-3-8-4, and 1-2-5-9-8-4-1-6 to represent these normal
cases, but PINs 1-1-1-1 and 5-5-5-5 to represent the two
extreme cases, one at the corner and the other at the center,
respectively. Each participant is asked to enter an error-free
PIN for at least 25 times and we collect a total of 11,062
error-free actions. The user’s timing and motion data are
recorded during the process. In this paper, we refer to an
action (or user input action) as the process of tapping one
PIN, instead of individual digits. The detailed information
of the collected data is listed in Table 1.

The timing information is in resolution of milliseconds.
Occasionally, some participants fail to make a smooth tap-
ping intentionally or unintentionally. Therefore, we employ
a simple outlier removal process to all the collected raw data.
An outlier tapping action is often signaled by a markedly
longer-than-usual time interval, especially for a user who is
very familiar with its own PIN. In our data set, a smooth
PIN tapping action takes at most 600 milliseconds between
subsequent keys for all participants. As a result, an inter-
key time of greater than one second always signals such an
outlier behavior. By this standard, a small amount of raw
data is filtered out, as listed in the right-most column of
Table 1.

All the data are collected on a Samsung Galaxy Nexus.
Its fastest sampling rate on motion sensor readings is about
100Hz. Figure 1(a) shows the layout of our Android ap-
plication for the data collection. In the experiments, all
the participants are asked to hold the phone with their left
hands, and tap with their right hand index fingers, as shown
in Figure 1(b).

We make use of the Android APIs to detect the touch
event, including both key-press and key-release. Between
each key-press and key-release, we record raw data of times-
tamps, acceleration, angular acceleration, touched-size, and
pressure. Acceleration and angular acceleration are from
API SensorEvent, while touched-size and pressure are from
API MotionEvent.
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Table 1: Collected Data

PIN Users Actions Average Actions Per User Filtered-Out

3-2-4-4 53 1,751 33 0.80%

1-1-1-1 41 2,577 63 2.64%

5-5-5-5 42 2,756 66 3.70%

1-2-5-9-7-3-8-4 27 1,939 72 7.37%

1-2-5-9-8-4-1-6 25 2,039 82 4.76%

Table 2: Features of Touchscreen Tapping Behaviors

# of Dimensions

Feature Set Description 4-digit 8-digit

Acceleration At TouchDown 8 16
(linear & At TouchUp 8 16
angular) Min in key-hold 8 16

Max in key-hold 8 16
Mean in key-hold 8 16

Pressure At TouchDown 4 8
At TouchUp 4 8

Touched Size At TouchDown 4 8
At TouchUp 4 8

Time Key hold time 4 8
Inter-key time 3 7

Total All features 63 127

3.1 Feature Extraction
Based on the raw data, we compute four sets of features

for each PIN typing action: acceleration, pressure, size, and
time. We describe each of them in the following:

• Acceleration: For each digit d in a PIN action, we
calculate the five acceleration values:

– Ad,1: the magnitude of acceleration when the digit
d is pressed down;

– Ad,2: the magnitude of acceleration when the digit
d is released;

– Ad,3: the maximum value of magnitude of accel-
eration during digit d key-press to key-release;

– Ad,4: the minimum value of magnitude of accel-
eration during digit d key-press to key-release;

– Ad,5: the average value of magnitude of accelera-
tion during digit d key-press to key-release.

All above values are the magnitude of acceleration
‖~a‖ =

√
a2x + a2y + a2z. We choose not to use individ-

ual components, because the phone coordinate system
is sensitive to location change. A similar procedure is
applied to calculate the features from angular accel-
erations. Combining both acceleration- and angular-
acceleration-related features, there are total of 40 in a
4-digit PIN action and 80 in an 8-digit PIN action.

X1!

X2!
Target User!

Impostors!
Boundary!

Figure 2: An illustration of two-feature space of a
target user and many others. X1 and X2 are the
two features. The dashed lines define the boundary
of the target user’s behavior. Because the target
user’s behavior is limited to a concentrated area,
the boundary blocks the majority of potential im-
postors.

• Pressure: We obtain the pressure readings through
Android API MotionEvent.getpressure(). The re-
turned pressure measurements are of an abstract unit,
ranging from 0 (no pressure at all) to 1 (normal pres-
sure), however the values higher than 1 could occur
depending on the calibration of the input device (ac-
cording to Android API documents). In the feature
set, we include pressure readings at both key-press and
key-release. There are 8 pressure-related features for
a 4-digit PIN, and 16 for an 8-digit PIN.

• Size: Similar to pressure readings, another Android
API call MotionEvent.getsize() measures the touched
size, associated with each touch event. According to
Android document, it returns a scaled value of the
approximate size for the given pointer index. This
represents the approximation of the screen area being
pressed. The actual value in pixels corresponding to
the touch is normalized with the device’s specific range
and is scaled to a value between 0 and 1. For each key-
press and key-release, we record the size readings and
include in the feature set. A 4-digit PIN contains 8
size-related features, and an 8-digit PIN contains 16.

• Time: key-hold times and inter-key time intervals be-
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Figure 3: Timing of tapping on the smartphone from
three different users, shown in three vertical pan-
els. Each user typed 20 times of the number string
“3244”. The solid dots represent key-press time, and
the open dots are key-release time. Different colors
represent the timestamps of different digits.

tween two nearby keys. They are measured from the
TouchEvent timestamps, of both TouchUps and TouchDowns.
Overall, a 4-digit PIN action contains 7 time-related
features, while 8-digit PIN contains 15.

For a 4-digit PIN, each action results in a total of 63 fea-
tures; for an 8-digit PIN, the number of features for one
action is 127. Table 2 summarizes the description of the
above four feature sets.

3.2 Touchscreen Tapping Characterization
Our underlying assumption is that a user’s feature dis-

tribution should be clustered within a reliably small range
compared with many others. As a result, those metrics can
be exploited to block the majority of impostors, as illus-
trated in Figure 2.

3.2.1 Uniqueness of User Pattern
As described above, we define four sets of features in order

to characterize a user’s tapping behaviors on smartphones:
acceleration (both linear and angular), pressure, size, and
time. All these features can be easily obtained from a smart-
phone’s on-board sensors, and can accurately characterize
a user’s unique tapping behaviors. Based on the feature
data, we observe that each user demonstrates consistent and
unique tapping behaviors, which can be utilized for differ-
entiating itself from other users.

Figure 3 shows the timestamps of entering the same PIN
3-2-4-4 from three different users, including the moments
of each key-press and key-release. Each individual’s tim-
ing patterns clearly differ, but are very consistent within
themselves. This is similar to the observations on a regular
computer keyboard [20].

In addition to timing information, motion data such as
pressure, touched size, and acceleration also reveal user-
specific patterns. Generally speaking, acceleration is pro-
portional to the tapping force applied to the touchscreen,
while angular acceleration represents the moment of force.
Touched size is related to both user finger size and tapping

force. Figure 4 shows the tapping pressure from three dif-
ferent users. We can see that three different users’ tapping
pressure form distinguishable individual patterns, with Sub-
ject #1 taps the hardest, Subject #2 taps much more gently,
and Subject #3 is gentlest. Meanwhile, the level of tapping
pressure is relatively consistent within one subject.

3.2.2 Dissimilarity Measures
We represent each user action as n-dimensional feature

vectors, where n is the number of feature dimensions. Us-
ing the dissimilarity score between two feature vectors, we
further verify if our extracted features of a user remain rel-
atively stable over multiple repetitions, in comparison with
those of the other participants.

As the first step, we compute a target user’s template as
an average feature vector over its N PIN tapping actions,
where N = 150 in our case. At the same time, each feature’s
standard deviation is computed based on these N actions.

In our approach, given a new biometric data sample, we
evaluate its dissimilarity score from the target user’s tem-
plate as follows. Suppose the new data sample’s feature
vector is X = {X1, X2, ..., Xi, ..., Xn}, where Xi represents
the ith feature dimension; and the target user’s template
is represented similarly as T = {T 1, T 2, ..., Tn}. The dis-
similarity score is the accumulated deviation from the two
vectors over all normalized features:

D(X,T) =
∑
i

∥∥∥∥Xi − T i

σi

∥∥∥∥ , (1)

where σi denotes the standard deviation of the ith feature
over the N trials in obtaining the target user’s template. By
dividing σi, we give higher weights to those features that
have smaller variation within the target user, because they
more reliably reflect the target user’s specific pattern. This
is a standard procedure mostly seen in outlier removal (also
known as standard score or z-score in statistics [30]).

Figures 5, 6, and 7 show the distributions of dissimilar-
ity scores, calculated from a target user’s template entering
three different PINs, respectively, to both the target user
itself and the rest of other users. It is clear that in all
three PINs, the dissimilarity scores to the target user itself
is highly concentrated on the lower end, indicating a high
similarity to its own behavioral template. Meanwhile, the
dissimilarity scores of other users are dispersed and located
on the higher end. For the 4-digit PIN 3-2-4-4 (Figure 5),
there is a small overlap of the target user itself with others.
It implies that only few members among the other 52 users
behave similarly to the target user, and may be misclassi-
fied. For the two 8-digit PINs (Figures 6 and 7), the target
user’s and others’ distribution curves are completely sepa-
rated with a clear gap in between. Likely this is because an
8-digit PIN action contains more cognitive information that
is user-specific than a 4-digit PIN action.

4. CLASSIFICATION
The system architecture of our approach consists of a fea-

ture module, a classifier module, and a decision maker mod-
ule as shown in Figure 8. Firstly, raw data are recorded
during user’s tapping actions. Then, four sets of features
are calculated and fed into the classifier, which derives a de-
cision score featuring its similarity to the target user’s tem-
plate. The decision score is used by the decision maker to
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Figure 4: Users’ tapping pressure on smartphone touchscreen, while entering an 8-digit PIN 1-2-5-9-7-3-8-
4. Each figure shows pressure readings on a 3×3 smartphone number pad. Darker color indicates a larger
tapping pressure. Note that number “6” has no pressure because it is not in the PIN. Figures in the same
row are from a same user while typing the PIN for three times.
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Figure 5: Distribution of dissimilarity score of typ-
ing 3-2-4-4 from a target user’s template, to both
the target user itself and other 52 users.

make a final decision, with respect to a predefined threshold
value. The final decision is to label whether an user tapping
action is originated from the target user or an impostor.

User behavioral pattern can be derived from either one-
class or two-class learning. In one-class learning, only the
target user’s data is needed in training phase; but the learned
model can be applied to classify both the target user or an
unknown impostor. Additionally, if other users’ data are
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Figure 6: Distribution of dissimilarity score of typ-
ing the 8-digit PIN 1-2-5-9-7-3-8-4 from a target
user’s template, to both the target user itself and
other users.

available, together with the target user’s own data, we can
conduct a two-class learning. One-class learning is straight-
forward and more practical because it does not involve other
users’ data, but with slightly lower verification accuracy. For
a two-class classifier, device manufacturers could pre-load
some anonymized user data into smartphones before ship-
ping them to their customers. With the pre-load anonymized
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Figure 7: Distribution of dissimilarity score of typ-
ing another 8-digit PIN 1-2-5-9-8-4-1-6 from a target
user’s template, to both the target user itself and
other users.

user data, two-class classification is also feasible to perform
in practice and can achieve higher verification accuracy. Due
to page limit, here we only present one-class learning and its
evaluation results in Section 5.

Our one-class learning process consists of the enrollment
and testing phases. In the enrollment of a target user I,
taking its N input actions, we calculate the standard devia-
tions of every feature as σj for the jth feature. In the testing
phase, given an unknown sample as n-dimensional feature
vector XQ, its distance from each of the N feature vectors
in the enrollment phase is calculated as:

d(XQ, Xi) =

n∑
j=1

‖XQ,j −Xi,j‖
σj

, i = 1, ..., N, (2)

where XQ,j is the jth feature of feature vector XQ, and Xi,j

is the jth feature of the ith feature vector in the enrollment
phase. Following this, the distance of XQ’s nearest neighbor
dmin(XQ, I) will be chosen as the dissimilarity measurement
to the target user’s template. The underlying assumption is
that if XQ belongs to the target user, it should have a short
distance to its nearest neighbor in the target user’s data.
And if dmin(XQ, I) is below a pre-defined threshold value,
it is labeled as from the target user; otherwise, it is labeled
as from impostors. Implementation wise, setting a large
threshold value means a higher probability of recognizing the
target user, but allowing more impostors to slip through. A
small threshold value strictly blocks out impostors, but may
falsely reject the target user.

5. EXPERIMENTAL EVALUATION
Generally, the accuracy of a biometrics-based authentica-

tion is evaluated by the following error rates:

• False Reject Rate (FRR) — the probability that a user
is wrongly identified as an impostor;

• False Accept Rate (FAR) — the probability that an
impostor is incorrectly identified as a legitimate user.

The point at which both FAR and FFR are equal is denoted
as the Equal Error Rate (EER). The value of EER can be
obtained by tuning a certain threshold until FAR and FAR
are equal.

A formal description of a biometric-based verification sys-
tem is summarized as [13]: given an unknown sample to
be verified towards a target user I, its feature vector XQ

is compared with the target user’s template XI . A dissimi-
larity score D(XQ, XI) is calculated, where D is a function
that evaluates the dissimilarity between two feature vectors.
The dissimilarity function D varies with different methods of
classification. Finally, a threshold value t is set to determine
if XQ is from the target user or an impostor:

(I,XQ) ∈

{
target user, if D(XQ, XI) ≤ t
impostor, otherwise

Tuning the threshold would give the classifier a prefer-
ence towards either the target user or the impostors, thus
reducing one error rate while increasing the other. Because
our approach acts as a second factor authentication, which
supplements the passcode-based mechanisms for higher as-
surance authentication in a cost-effective fashion, we focus
more on being user-transparent and user-friendly while en-
hancing the security of PIN-based authentication.

In the following, we present the evaluation results of the
one-class based verification system, along with the effect of
threshold and number of actions in training, the compari-
son with different combination of PINs, and the associated
system overhead.

5.1 Verification Accuracy
There are two parameters that affect the accuracy in one-

class learning: the number of actions in training, and the
threshold.

By increasing the number of actions in training, user be-
havioral patterns become more precise since more actions
yield a higher statistical significance. Figure 9 shows that
the averaged equal error rate (EER) decreases as more user
actions are included in training. All five PIN combinations
present similarly shaped curves, while the results of 1-1-1-1
and 5-5-5-5 are less accurate than those of 3-2-4-4 and the
two 8-digit PINs. From lower accuracy of 1-1-1-1 and 5-5-5-
5, it seems that a PIN number with higher repetition of digits
reduces the difference in individual users’ tapping behaviors,
leading to a less accurate verification result. Moreover, for
all five PINs, the accuracy remains on a similar level after 20
user actions. This implies, as more user actions are added
in training, there is a diminishing gain in accuracy. For ex-
ample, increasing user actions from 20 to 40 requires twice
the time waiting for user input, but only limited accuracy
increase is seen.

Table 3 further lists the exact values of averaged EER,
with its standard deviation in parenthesis. In computing
EERs, there are 85 user actions included in the training pro-
cess. As shown in Figure 11, in all three PIN combinations,
there is a trade-off between FRR and FAR.

As mentioned earlier, four sets of features are included:
acceleration, pressure, size, and time. To measure how the
four sets of features contribute to the final accuracy, we make
four additional rounds of classification, solely based on each
feature set. Figure 10 shows the accuracy results for the four
individual feature sets, as well as those of combining them
all together.

It can be seen from Figure 10 that, the combination of
all four feature sets always outperforms individual feature
set, as it is always with the smallest EER in all different
scenarios. This is because the four feature sets capture the
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Table 3: User Verification Accuracies

PIN Equal Error Rate (EER)a

3-2-4-4 3.65% (3.58%)
1-1-1-1 6.96% (6.01%)
5-5-5-5 7.34% (5.38%)

1-2-5-9-7-3-8-4 4.55% (6.23%)
1-2-5-9-8-4-1-6 4.45% (4.15%)
a with standard deviation in parenthesis

different aspects of user tapping behaviors, and having them
all together should most precisely represent who the target
user is. Meanwhile, among the four individual feature sets,
acceleration, pressure, and time perform similarly well and
achieve more accurate results than size.

5.2 System Overhead
In our implementation, the verification system is entirely

built on a smartphone. As a stand-alone system, there is
only a single user present for verification at any given time.
There is no communication overhead associated with our
user verification.

We first estimate the memory overhead of the verifica-
tion process. The verification process is profiled using the
Android SDK tool DDMS, and we find out that it only con-
sumes 11.195 MBytes of heap memory during a one-class
testing process and this memory consumption is a one-time
cost. The computational overhead is the sum of CPU costs

in raw data processing (calculating features) and detect-
ing (including classifying and decision making). The pre-
processing on one user input action of a 4-digit PIN takes
only 0.022 seconds. The detecting process takes another
0.474 seconds, where the major part lies in finding the near-
est neighbor from all 85 reference feature vectors. The CPU
cost is measured on a Samsung Galaxy Nexus, using two
Date.getTime() utility call at the beginning and end of the
running time. Overall, the induced computational overhead
is minor on the smartphone. In terms of disk space for stor-
ing user template, the signature of a single user profile gen-
erated by the training process consumes only 150.67KBytes.
It is very affordable on an entry-level smartphone, let alone
high-end models.

6. ADDITIONAL ISSUES IN REALITY
In this section, we will discuss four additional issues in

reality: multiple positions, mimic attacks, user behavior
changes, and passcode changes. They all stem from the
complexity of human behaviors and environmental factors
in smartphone usage, and in turn affect our user verification
performance in various ways. However, there exist viable
solutions to deal with each of the issues.

6.1 Multiple Positions
So far we only measure the user tapping behaviors in a

given position. However, it is quite possible that a user
types in a passcode under different positions (e.g., single
handed using the thumb). To handle different input posi-
tions, we can measure and store multiple behavioral pat-
terns for different positions during the training period. The
rich sensors equipped with smartphones allow us to easily
detect the physical position of the device and choose the
appropriate behavioral pattern for verification. For exam-
ple, accelerometer readings straightforwardly signal if a user
is in a moving or non-moving status. And gyroscope read-
ings can even infer the user’s hand position (one-handed vs.
two-handed) when tapping on the smartphone, as shown in
a recent study [11].

To explore on multiple tapping positions, we further con-
duct two more sets of empirical measurements. First, we
collect data with only one-handed tapping, which is in par-
allel with the two-handed case in Section 5. In one-handed
tapping, the phone is held in one hand, and tapped with the
thumb finger of the same hand. Due to the use of a differ-
ent finger, the one-handed tapping behavior is different from
that of two-handed. However, with the one-handed data set
as the training data, we perform the same evaluation process
as in Section 5 and achieve an average EER of 3.37% over
all PINs in the on-handed case, indicating the effectiveness
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of our approach just like in two-handed tapping.
In addition to different hand positions, there are also var-

ious body positions a user would switch from time to time.
While tapping a passcode, a user can be sitting, standing,
lying on a sofa/bed, or even walking. It is desirable to see
how different body positions affect a user’s tapping behav-
ior. To answer this question, we carry out an additional
experiment with ten users, who tap in PINs with four body
positions: sitting, standing, lying and walking. Every user
is asked to type in a given PIN number 20 times under each
body position.

In order to better characterize the tapping behaviors un-
der multiple positions, we have made two slight adaptions in
the data analysis. First, acceleration features are disabled,
due to their over-sensitivity especially in the walking sce-
nario. Second, timing features are normalized with the total
time of entering a PIN. As a result, behavioral models of
a given user are more consistent among multiple positions
but still distinguishable from those of other users. Using the
trained model with one-handed tapping while sitting as the
baseline, Figure 12 shows the average dissimilarity scores to
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Figure 12: Comparison of multiple tapping posi-
tions for each PIN number, based on 10 users’ data.
Red dashed lines indicate the baseline dissimilarity
scores in the training position.

four different body positions: sitting, standing, lying and
walking, as well as the average dissimilarity score to all the
other nine users while sitting with respect to each target
user. Note that in Figure 12 the dissimilarity scores under
the same tapping position in training (which is “sitting” in
our case) are not zero. This is because those biometric fea-
tures cannot be repeated exactly by human users every time.
Therefore, the dissimilarity associated with “sitting” (shown
as red dash lines in the figure) indicates the intrinsic noise
level in tapping behavior while sitting. From Figure 12, we
can see that the average dissimilarities in different body po-
sitions are only slightly higher than the baseline, while still
having a clear gap from those of the other users.

To summarize, our approach will work well for different
input positions: sitting or walking, single-handed or two-
handed. The challenge is merely to increase the training
period and cover different input positions with more feature
sets, which will impose a larger memory and CPU overhead
in verification. However, we could further reduce the system
overhead by optimizing the classifier implementation from
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different aspects of mobile devices. Note that the current
one-class classifier has not been optimized. We will further
explore this direction in our future work.

6.2 Mimic Attacks
Theoretically, our behavior-based verification system can

be bypassed if an impostor can precisely mimic the tapping
behaviors of the device’s owner. However, this is extremely
difficult if not impossible in practice. Intuitively, even if the
impostor has overseen how the device’s owner previously en-
tered the passcode, it might be able to mimic the timing as-
pect. But the other features, such as pressure, acceleration,
and size, are much more difficult to observe and reproduce.

We set up an experiment in order to quantitatively mea-
sure the effect of mimic by observation. Details of this ex-
periment is shown in Appendix II. It shows the robustness
of our approach against a mimic attack, which we believe is
due to the following three aspects.

• There are multiple dimensions in the features we used
and most of them are independent from each other.
Although an impostor may mimic one dimension with-
out much difficulty, mimicking multiple dimensions si-
multaneously is extremely difficult as small physical
movements like tapping are hard to observe and pre-
cisely reproduce. For example, acceleration directly
relates to tapping force (F = m · a), so if the impos-
tor intentionally manages to tap in a gentler or harder
fashion, its behavior can get closer to that of the target
user. However, pressure is harder to mimic because it
equals to tapping force divided by touched area. These
two independent factors must be adjusted at the same
time, which is more challenging. Timing (or tapping
rhythm) is also hard to mimic, because timing contains
multiple dimensions in our approach: 7 in a 4-digit
PIN, and 15 in a 8-digit PIN. Those individual time
intervals (especially key-to-key intervals) are relatively
independent. An impostor may mimic the target user
with a roughly fast or slow rhythm, but it is hard to
reproduce the specific key-to-key dynamics.

• The fine-grained measurement resolution makes our
features hard to mimic. For example, in our experi-
ment, timing is measured in order of millisecond. This
time resolution is much higher than human perception,
and hence it is very hard for an impostor to accurately
and consistently mimic tapping rhythm at such a low-
level resolution.

• The physiological differences from the target user set
up another barrier for mimic impostors. In our feature
set, the touched size is heavily affected by the finger
size, and the tapping rhythms also depend on hand
agility and geometric shape. In general, it is very dif-
ficult for a person with bigger hand/fingers to mimic
someone with smaller hand/fingers, and vice versa.

As more sensors have been available on mobile devices,
more features will be included for more accurate user verifi-
cation, and hence mimic attacks will just become less likely
to succeed.

6.3 User Behavior Changes
This work builds on the assumption that a user’s behav-

ior is consistent and no abrupt change happens over a short

period of time, but the assumption might not always be
true, e.g., due to a physical injury. In such scenarios, the
behavioral-based verification mechanism should stay mini-
mally intrusive to the user. One feasible solution is to con-
tact with the service providers to disable the verification
function remotely and start the re-training. The purpose
of our user verification is to provide additional security in
common day-to-day usage while still allowing the user to
disable it in rare cases. As we have shown previously, the
sensitivity to false positives and negatives are controlled by
various threshold values. Whether or not exposing the sen-
sitivity control, e.g., setting it to Low, Medium, and High,
can improve user experience is debatable. On one hand, it
allows users to make a conscience choice to trade off between
security and convenience. On the other hand, it is no longer
user-transparent.

6.4 Passcode Changes
In our approach, only the tapping features of the currently

active passcode are measured and recorded in a user’s smart-
phone. One might ask what happens when the user need to
change its passcode? Although people do not frequently
change their passcodes, updating passcode in a quarterly or
yearly basis is recommended or required by most passcode-
based systems. When this happens, our verification system
could automatically remain inactive for a while and start an-
other training session to build a new set of tapping features
based on the newly created passcode. The characterization
of tapping features are conducted in background till a stable
pattern has been successfully compiled after multiple trials.
Note that the methodology of our scheme is not bounded
to certain passcodes. In other words, our approach can be
applied to any passcode a user chosen in practice.

7. RELATED WORKS
This section reviews related works from three different as-

pects: keystroke dynamics and graphical passwords, infer-
ring tapped information from on-board motion sensors, and
user (re-)authentication by their finger movements on touch
screens, approximately in chronological order and with in-
creasing closeness to our work.

7.1 Keystroke Dynamics
Keystroke dynamics, as one of the behavioral biometrics,

has been extensively studied in distinguishing users by the
way they type on a computer keyboard [3, 15, 24, 28]. Mon-
rose et al. [22, 23, 24] first developed the concept of password
hardening based on keystroke dynamics. It has been found
to be a practical solution to enhance the password security
in an unobtrusive way. Research done on the analysis of
keystroke dynamics for identifying users as they type on a
mobile phone can be found in [7, 14, 32]. Clarke et al. [7]
considered the dynamics of typing 4-digit PIN codes, achiev-
ing an average Equal Error Rate (ERR) of 8.5% on physical
keyboard on a Nokia 5110 handset. Karatzouni et al. [14]
carried out another evaluation on a PDA phone with physi-
cal keyboard, which yields an average EER of 12.2%. Zahid
et al. [32] examined this approach on touchscreen keyboards
and achieved, in one best scenario, a low Equal Error Rate
of approximately 2% with training set required a minimum
of 250 keystrokes.

Our work differs from the existing works above mainly
in two aspects. First, previous studies are all based on
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physical keyboards (either in computers or mobile phones),
while our work studies user tapping behaviors with on-screen
touch-enabled keyboards, which are widely deployed in most
smartphones today. Second, besides keystroke timings, we
include additional features (pressure, size, and acceleration)
for user verification by exploiting various on-board smart-
phone sensors. This allows us to achieve a complete and
fine-grained characterization on user tapping behaviors.

7.2 Inferring Tapped Information from On-
board Motion Sensors

Several independent researches have found that simply by
using data acquired by smartphone motion sensors, it is suf-
ficient to infer which part of the screen users tap on [5, 21,
26, 31]. The first effort was done by Cai et al. in 2011 [5].
They utilized features from device orientation data on an
HTC Evo 4G smartphone, and correctly inferred more than
70% of the keys typed on a number-only soft keyboard. Very
soon, Xu et al. further exploited more sensor capabilities on
smartphones, including accelerometer, gyroscope, and ori-
entation sensors [31]. Evaluation shows higher accuracies of
greater than 90% for inferring an 8-digit password within
3 trials. Miluzzo et al. demonstrated another key infer-
ence method on soft keyboard of both smartphones and
tablets [21]. 90% or higher accuracy is shown in identi-
fying English letters on smartphones, and 80% on tablets.
Owusu et al. [26] infers taps of keys and areas arranged in
a 60-region grid, solely based on accelerometer readings on
smartphones. Result showed that they are able to extract
6-character passwords in as few as 4.5 trials.

7.3 User Authentication by Their Finger Move-
ments on Touch Screens

Research has been done in exploring different biometric
approaches for providing an extra level of security for au-
thenticating users into their mobile devices. Guerra-Casanova
et al. [12] proposed a biometric technique based on the idea
of authenticating a person on a mobile device by gesture
recognition, and achieve Equal Error Rate (EER) between
2.01% and 4.82% on a 100-users base. Unobtrusive methods
for authentication on mobile smart phones have emerged as
an alternative to typed passwords, such as gait biometrics
(achieving an EER of 20.1%) [9, 25], or the unique move-
ment users perform when answering or placing a phone call
(EER being between 4.5% and 9.5%) [8].

Very recently De Luca et al. [18] introduced an implicit
authentication approach that enhances password patterns
on android phones, with an additional security layer, which
is transparent to user. The application recorded all data
available from the touchscreen: pressure (how hard the fin-
ger presses), size (area of the finger touching the screen),
x and y coordinates, and time. Evaluation is based on 26
participants, with an average accuracy of 77%.

A concurrent work conducted by Sae-Bae et al. [29] makes
use of multi-touch screen sensor on iPad (not phone) to cap-
ture the palm movement. They achieved a classification ac-
curacy of over 90%. However, palm movements is not suit-
able for smartphone screens, since the screen is typically too
small for palm movements. Citty et al. [6] presented an al-
ternative approach to inputting PINs on small touchscreen
devices. It uses a sequence of 4 partitions of a selection of
16 images, instead of 4-digits PINs, to increase the possi-

ble combination of authentication sequences. However, in-
putting the sequence needs extra efforts in memorizing the
images sequences. Kim et al. [16] introduced and evaluated
a number of novel tabletop authentication schemes that ex-
ploit the features of multi-touch interaction.

There are two recent works close to ours in authenticat-
ing smartphone users by continuously monitoring their fin-
ger movements on the touchscreen [10, 17]. Frank et al.
conducted a study on touch input analysis for smartphone
user authentication, which is referred to as touch biomet-
rics [10]. Based on a set of 30 behavioral features, the
authors built proof-of-concept classifiers that can pinpoint
a target user among 41 users with very low equal error
rate. Given the non-trivial error rates, this kind of touch-
based analysis is qualified as a complementary authentica-
tion mechanism. Shortly after, Li et al. conducted another
detailed study aiming to provide continuous re-authentication
based on user touchscreen behaviors [17]. Their system
monitors and analyzes user interaction with touchscreens in
background, and achieves a high authentication accuracy of
up to 95.78%. Our work differs from these two studies in the
following aspects. First of all, we focus on studying tapping
behaviors exclusively, instead of sliding behaviors—the ma-
jor gesture in the two previous works. This is because in our
study, users make a constructed sequence of tappings in en-
tering PINs at lock screen, which convey rich personal infor-
mation. By contrast, Frank’s work solely focuses on sliding
gestures; and in Li’s work, their focus is on those random
touch screen behaviors after screen is unlocked. As random
tappings do not provide much user information, the sliding
gestures play a dominate role in Li’s work. Additionally,
we focus on studying touch biometrics in order to harden
one-time static authentication (more specifically, passcode-
based screen unlock), rather than for continuous authenti-
cation. In that sense, our system is complementary to these
two works and can be deployed in parallel with them . Fi-
nally, unlike these two works, we employ one-class learning
for user verification, which does not require training data
from other users, but purely depending on the smartphone
owner’s data.

8. CONCLUSION
As mobile devices are getting widely adopted, ensuring

their physical and data security has become a major chal-
lenge. A simple peek over the shoulders of the device owner
while the passcode is being entered and a few minutes of
hiatus would allow an attacker to access sensitive informa-
tion stored on the device. Using more complex passcodes
and/or secondary passcodes can reduce the chance of such
attacks, but it brings significant inconvenience to the users.
We have found that a user’s tapping signatures if used in
conjunction with the passcode itself can also achieve the
same goal, and moreover, the added security can be ob-
tained in a completely user-transparent fashion. Previous
works have shown the feasibility of this approach, but their
high error rate makes these mechanisms impractical to use
as too many false positives will defeat the purpose of being
user-transparent. Having collected data of over 80 differ-
ent users, explored the one-class machine learning technique,
and utilized additional motion sensors on newest generation
of mobile devices, we are able to demonstrate accuracies
with equal error rates of down to 3.65%.
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Appendix I: Participants Consent Form in Data
Collection
The general nature of this study entitled “User Verification
on Smartphones via Tapping Behaviors” conducted by Dr.
(name masked) has been explained to me. I understand that
I will be asked to (1) conduct regular tasks with a smart-
phone, like entering a designated 4-digit number; (2) tap-
ping on the touchscreen in a regular way during the study;
and (3) spend about 5 minutes for the entire process. No
data are being collected regarding personal credentials —
e.g., no tracking on my personal credentials, because I will
be given a designated number to enter. Only the physical
input data from the touchscreen sensor are recorded, includ-
ing taping pressure, contact size, acceleration of the phone,
and timing information. I understand that my responses
will be anonymous and that my name will not be associated
with any results of this study. I am aware that I am free
to discontinue my participation at any time and may report
dissatisfactions with any aspect of this experiment to the
Chair of the Protection of Human Subjects Committee, Dr.
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Effect of Mimic Attack

0 0.5 1 1.5 2 2.5 3

Dissmilarity Score

All Features

Target User
Impostor #2 (After Observation)

Impostor #2 (Before Observation)
Impostor #1 (After Observation)

Impostor #1 (Before Observation)

0 0.2 0.4 0.6 0.8 1 1.2

Dissmilarity Score

Time

0 0.2 0.4 0.6

Dissmilarity Score

Pressure

 0  0.5  1  1.5  2

Dissmilarity Score

Acceleration

0 0.1 0.2 0.3

Dissmilarity Score

Size

Figure 13: Effect of mimic attack shown in degree of dissimilarity from the target user. Subfigures, from
left to right, correspond to all features considered, and each individual feature set (acceleration, pressure,
touched size, and time). There are two mimic “attackers”, and 10 trials before and after their observations
on the target user.

(name masked), (phone number masked) or (email address
masked). I am aware that I must be at least 18 years of
age to participate. My signature below signifies my volun-
tary participation in this project, and that I have received
a copy of this consent form.

Appendix II: More on Mimic Attack
In this appendix, we present the detailed experimental re-
sults on mimic attacks.

Figures 13 plots the dissimilarity scores from the target
user’s model to the two impostors before and after their
mimic trials. The subfigures from left to right correspond
to all features considered and four individual feature sets
(acceleration, pressure, touched size, and time). Our ex-
perimental results clearly show that there is no significant
improvement in mimicking given the behavior observation.
Taking all four features into account, it is evident that a
mimic attack is very hard to succeed. For each individual
feature (acceleration, pressure, size, and time) shown in Fig-
ure 13, we can see that only the dissimilarity scores of accel-
eration are consistently reduced (i.e., its score range shifts
towards that of the target user after observation). However,
for the other three features (including pressure, size, and
time), out of the 10 mimic attempts, just one or two tri-
als may be slightly closer to the target’s model, but their
score ranges spread even wider. Thus, the behavior mimick-
ing does not increase the chance of evasion with respect to
these three features.
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